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SENSE & SENSIBILITY Our robot series 
continues by looking at how robots can be 
made to ‘sense’ what is happening around 
them by fitting them with sensory devices 

SHOPPING AROUND We review 10 of 
the most popular home computers and give 
you some guidelines on buying 

CALCULATING MACHINE Many home 
computers have spreadsheet programs 
written for them, and although they may lack 
the versatility of programs such as Visicalc, 
they can manage small business applications 

oo 2 1) What happens to a ‘grandfather file’? 

DRAGON SLAYER We develop a Loco = 2) What are decoders? | 

ame for the C dore 64 that full 3) What do transducers do? 

ee ee y i 4) Where would you find the system variable 
exploits the machine’s sprites potential | . 

weekly GATES TO GRAY CODEA 
glossary of computing terms 

CALLING COMMODORE We have 
developed a utility program that creates a list 
of variable names for the BBC Micro and the 
Spectrum, now we develop a program for 
the Commodore 64 

SUSPENDING OPERATIONS Interrupt 
routines suspend the task the processor is 69 / 
carrying out in order to convey information 
to it. We learn how to implement them in 
machine code 

a 

DISPLAY COUNTER We enhance our : 
user port system by building a seven- 685 
segment display unit that will display the 
contents of the user port data in hexadecimal 

REFERENCE CARD We continue to list INSIDE 
extracts from the Z80 programmers’ BACK 
reference card COVER 

COVER PHOTOGRAPHY BY IAN McKINNELL 
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Our series of articles has now considered 
methods of controlling robot movement and 
the design of robotic ‘arms’ and ‘hands’. We 
now turn our attention to the ways in which 
robots can ‘sense’ what is happening in the 
world around them. | 

The human sensory apparatus is something that 
we take very much for granted, but a person 
lacking all senses would be totally helpless. 
Without a sense of sight, you would bump into 
objects as you tried to walk; lacking a sense of 
touch you would not even know that you had 
bumped into anything; total deafness would mean 
that you could not even receive a warning that you 
were about to walk into an object. In fact, you 
wouldn't be able to walk at all, because internal 
senses are required to inform your brain of the way 
in which your body is moving. 

We have explained how a robot can move 
around, but we must also provide it with a sensory 
system before it can act independently. It is 
tempting to try to design a robot that possesses all 
human senses — it could then perceive the world 
in much the same way as we do. As yet, however, 
this is impossible. The subjects of robot vision and 
speech understanding are so complex that we will 
deal with them at length in a later article. Here we 
will concentrate on simple approximations of sight 
and hearing that are far below the level of 
complexity possessed by humans. — | 
A robot can be made to ‘see’ things quite easily 

by providing it with a light sensor — usually a 
photoelectric cell — which produces a voltage that 
varies with the amount of light falling on it. This is 
a very crude vision sensor, but it can be used to 
good effect. For example, a robot can be made to 
‘home in’ on a bright light in much the same way as 
it can follow a line (see page 641). This might be 
used to allow the robot to return to a power point 

Robotic Sensation 
The sensing equipment that a 
robot needs depends entirely 
upon its functions, but the more 
general-purpose the robot, the 
more sensors it is likely to need. 
The robot illustrated has 
examples of most of the 
possible sensors available, 
though it is unlikely that any 
single robot would carry such a 
range 
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for recharging when its batteries run down. (Note 
that this will require the robot to possess an 
internal sensor for monitoring the state of its 
batteries so that it ‘knows’ when they are low.) 

This simple photoelectric cell can allow a robot 
to perform a number of tasks. A robot working on > 
an assembly line would be able to check if a 
component was present by detecting the change in 
brightness that results from the object’s absence; 
this task can be made easier by ensuring that the 
lighting is arranged so that such a difference is 
accentuated. The robot could detect colour 

SENSORS 
The optical sensor is a slow- 
scan low-resolution 
monochrome television 
camera. It produces an image 
in shades of grey that contains 
enough information for simple 
tasks such as line-following 
and edge-detecting 

The infrared camera 
composes its picture in much 
the same way as the television 
camera, but senses infrared 
rather than the visible light 
spectrum. Infrared penetrates 
smoke and haze better than 
light, and also reveals the 
temperature of objects 

Ultrasound is high-frequency 
sound used here for 
directional range-finding. The 
scanner consists of the 
ultrasound emitter and the 
directional microphone 
receptor. When ultrasound 
bounces off an object, the 
texture of the reflecting 
surface distorts the echo 
waveform in a unique and 
recognisable ‘signature’ 

The low-power laser scanner 
is used for high-accuracy © 
direction- and range-finding. 
Laser light can be very finely 
focused, which allows precise 
detailed examination of 
nearby objects 

The gas proximity detector 
consists of a gas emitter and a 
pressure sensor. The emitter — 
regularly squirts gas into the 
chamber, which causes a 
known increase in the ambient 
pressure; if an object is close 
to the mouth of the chamber, it 
will affect this pressure 
increase in a detectable way 

The light pen can be used for 
many kinds of digital input, of 

ae 

The multimeter probes allow 
the measurement of 
resistance, capacitance, 
voltage and current, and can 
also function as 
thermocouples allowing 
temperatures to be measured 
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changes if three photoelectric cells were 
incorporated, each responding to light of different 
colours — red, green and blue would cover the 
visible spectrum. Such a robot could be 
programmed to pick out red bricks from a pile 
containing bricks of many different colours. ‘This 
gives the impression of ‘intelligent behaviour 
from a very simple sensor. 

_ Providing the robot with a microphone will 
allow it to ‘hear’ acoustic signals. It will not 
‘understand’ what it is hearing, but this need not 
matter — by repeating a set of commands several 
times, the robot can build up a ‘template’ of sound 
for each command that will enable it to match new 

- commands against those it has already heard. The 
number of commands to which it can respond will 
be limited, but we could tell it to ‘go forward’, 
‘stop’, ‘turn left’, and so on, and it would be able to 
follow these instructions. 3 
A robot can also have a simple sense of touch. 

Microswitches can be incorporated into the robot’s 
design so that they make an electrical connection 
whenever pressure is applied to them. These lack 
the sophistication of the human sense of touch, but 
they can still be very useful. For example, touch 
sensors mounted around the edge of a mobile 
robot can allow it to respond intelligently to any 
obstacles: it will be able-to back away from the 
obstruction and try a different route. Touch 
sensors incorporated into a robot hand will let it 
‘know’ when it has something within its grasp so 
that it can respond accordingly. 

Smoke or gas detectors can be used to give a 
robot something of a sense of smell. Gas detectors 
normally use a sensory element (such as a 
platinum wire) that responds to the presence of 
certain gases, thus altering the electrical current 
flowing through the element. Smoke detectors 
have two chambers — one enclosed, acting as a 
reference or ‘control’, and the other open. Both 
chambers contain ionised helium and the number 
of charged particles in the open chamber varies 
when smoke is present. A detector that counts the 
number of charged particles in each chamber will 
register a difference between the two if smoke is 
present. 

As yet, there appears to be no way in which a 
robot can be given a sense of taste. However, using 
the methods suggested above, we at least have a 
robot that can see, hear, feel and smell well enough 
to detect a fire in a building, rush towards the 
flames, avoid obstacles in its way and, if it happens 
to have a fire extinguisher in its end effector, spray 
the fire with foam. 

POTENTIAL GAIN 
But in limiting a robot to the type of senses 
possessed by humans, we lose much of its 
potential. There is no reason for the robot to be 
restricted to detecting things in the ways that we 
detect them. A better approach might be to 
consider what senses can be given to a robot and to 
decide if there is any practical use for them. 

_ A good example of this concerns robot arms. 

—3— 



Let’s assume that we want a robot to pick up an 
object from one location and then place it 
somewhere else. One way of doing this is to fix end 
stops around the arm so that it can travel a set 
maximum distance in any given direction. The 
arm would then swing around until it came to the 
end stops, at which point (if everything was 
positioned correctly) the hand would be directly 
above the object to be grasped. After picking up 
the object, the arm could swing in the opposite 
direction until another set of end stops would let it 
know that the object should be released. This is a 
simple example, and it is one that is becoming less 
common, but it demonstrates that robots can use 
senses that are not possessed by humans. 

Perhaps a better example is a robot’s use of 
‘vision’. Humans see only visible light — a large 
part of the electromagnetic spectrum is invisible to 
the human eye — but there is no reason why a 
robot should be so confined. Infrared detectors — 

may be fitted in place of photoelectric cells; these 
will allow the amount of heat generated by an 
object to be measured. Industrial robots can make 
use of these detectors to move away from any 
dangerously hot objects, for example. But a robot 
could also detect the warmth of a human body — 
so your personal robot could be programmed to 
come running to greet you as you walk through 
your front door! Robots can also be made to detect 
magnetic fields. This has already been discussed in 
connection with robots that follow a track laid in 
the ground, but this facility would also be useful in 
applications in which a robot must differentiate 
between magnetic and non-magnetic materials. 

Proximity sensors have no direct human 
equivalent — these are merely devices that can 
detect when an object is near them. Humans use a 
combination of sight and touch for this purpose, 
but a simple proximity sensor is just as suitable for 
robot use. Such sensors work in a number of 
different ways. One type uses an air jet squirted 
through a nozzle; any object in the jet’s path will 
deflect the air back towards the nozzle. This 
creates a back pressure that may be detected by a 
pressure transducer, thus warning the robot that 
something is near. Another type depends on the 
fact that an electrical circuit with a capacitance will 
change its behaviour if it approaches another 
object. An electrical ‘leak’ between the capacitor 
and the object (which will have a capacitance of its 
own) will inform the robot that an object is nearby. 

TRANSDUCERS 
There are also ultrasonic sensors that work by 
emitting an ultrasonic signal and then picking up 
the echo from the nearby object. The time delay 
between the signal and the echo gives an exact 
measurement of the distance from the object. This 
is similar to the method used by bats for 
navigation, and the principle is also used in some 
auto-focusing cameras. 

More sophisticated still are laser sensors. These 
direct a laser beam onto an object, which then 
reflects the laser light back to the sensor. By 

comparing the two beams it is possible to 
determine the object’s distance with astonishing 
accuracy. This technique can be used over great 
distances. During the first manned lunar landing, a 
reflector was placed on the moon so that a laser 
sensor could measure the exact distance between 
the Earth and the Moon. The accuracy of this 
measurement is said to be within 15 centimetres 
six inches) over a distance of 384,400 kilometres 
(250,000 miles)! 

Force sensors are a means of obtaining tactile 
information by more sophisticated means than. 
mechanical microswitches. These work by 
measuring the change in the electrical properties 
of a piezo-electric crystal when it comes under 
pressure, or by calculating the change in 
conductivity of carbon graphite granules under 
pressure (using a technique identical to that 
employed in the carbon microphone). 
Alternatively, strain gauges can be used to 
measure large forces by detecting changes in the 
electrical resistance of a wire as it is stretched. 

These robot sensors come under the heading of 
‘transducers’, as they take a measurement in one 
form (such as light, sound or pressure) and convert 
(‘transduce’) it into another form that in some way 
represents the original measurement. On a 
computer-controlled robot, the transducers 
almost invariably convert the measurement into 
an electrical signal that may be binary (i.e. the 
signal is either present or absent) or analogue (the 
signal varies as the original measurement 
changes). In the latter case, the electrical signal 
must be converted into a form the computer can 
understand by using an analogue-to -digital 
(A/D) converter. | 

It is fair to say that a robot’s senses are not, at the 
moment, as comprehensive or as effective as the 
human equivalents. But the robot has more of 
them — and they are getting better all the time. 

No Sense, No Feeling 
This industrial robot arm is 
cleaning castings straight from 
the mould when they are still too 
hot to be touched by human 
hands. The robot is impervious 
to heat, of course, and 
therefore processes the work 
more quickly 
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Sense From The Sensors 
Making sense of the outside world is the robot’s greatest 
problem, the more so as the range and complexity of its sensing 
equipment increases. No single sensor will give a completely 
informative picture, and some may seem to contradict one 
another. The extent to which the robot can integrate and compare 
the input from its various sensors is the measure of its external 
‘consciousness. : 

The plan shows that, in this example, the robotis in a 
corridor whose walls are painted flat white; there is only one light 
source, so the illumination of a wall depends upon its orientation. 
Near the robot is a yucca palm 
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The range-finding laser 
enables the robot to draw an 
accurate plan of its 
surroundings, and reveals the 
outlines of the yucca-patm-A~ 
sence eran 

small-mevementby the robot 
‘wiltproduce parattax with 

spect to the yucca, which ~ 
allows the ropot to distinguish mtr aan 

it as an object isolated from 
the Surrounding walls 

The television camera gives a 
low-resolution monochrome 
panorama of the 
surroundings; this can be 
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DISPLAY COUNTER 
siti fieutatitit ditt 

In this instalment of Workshop we add two 
seven-segment displays to our user port 
system that will enable us to display the 
contents of the user port data continuously 
in hexadecimal. 

In order to display hexadecimal digits, four bits are 
required (four bits give us 16 permutations of zeros 
and ones). Thus, any eight-bit number can be 
represented using two hexadecimal digits: one for 
the lower four bits and another for the upper four. 
Although each display is made up of seven LED 
segments, the various combinations of segments 
can be ‘driven’ by four input lines if decoder logic 
is incorporated into the circuit. 

Decoders are circuits that translate instructions 
from the computer to its peripherals into electrical 
signals, and vice versa. In our series on logic we 

— built our own decoder circuit (see page 146), but 
for this exercise we can buy an off- the-shelf logic 
circuit. This is chip 7447 in the parts list. | 

The decoder for each display accepts four input 
lines from the user port and, via a sequence of logic 
gates, provides seven outputs. The logic circuit has 
been designed in such a way that if, say, the four 
input lines were 0111, then the appropriate bars 
would be lit to display the figure 7 (0111 in binary 
is equivalent to 7 in hexademical). The truth table _ 
for this 1s shown in the margin. 

Hexadecimal digits greater than nine are 
usually represented by the first six letters of the 
alphabet — A to F You will notice that the 
decoder chip that we are using has rather strange 
patterns to represent these digits. It is probable 
that these patterns can be generated using the logic 
circuits required for the digits zero to nine. More 
decoding logic would be needed to display the last 
six hex digits in the more usual alphabetic way, so 
by leaving the extra logic out and using different 
symbols for these digits, the number of logic gates 
in the decoder is reduced, thus bringing down the 
cost of manufacturing the chip. 

- Once the display circuit has been built we can 
display continuously the contents of the user port 
data register in hex using the eight data lines 
provided. There are sufficient lines: available to 
drive the two displays simultaneously, but in many 
display applications this is not the case and several 
seven-segment displays have to share the same 
data lines. So that each display can show different 
information at the same time, a technique called 
‘multiplexing’ is used. Essentially, the data lines 
from the display decoder are flipped from one 
display to the next, the data present on the lines 
also being changed appropriately. If this is done 

fast enough all the displays multiplexed in this way 
will appear to glow continuously, each displaying 
the data that was present at the time when it is 
momentarily connected to the data lines. 

We can demonstrate the principle of 
multiplexing using the two seven-segment 
displays that we are building. Because the display 
decoder represents decimal 15 by a blank, we can 
use this number to blank out one display while 
lighting the other. The following program, when 
run, asks for a digit to be displayed and then 
appears to show the digit on both displays 
simultaneously. However, a routine is included 
that inserts a delay to slow down the oscillation 
between the two displays. The delay is inserted 
while the Space bar is depressed. We can see, on 
running the program and depressing the Space 
bar, that the digit does in fact flip backwards and 
forwards between the two displays. When the 
Space bar is again released, the delay is removed 
and the flipping action is faster, making the digit 
seem to appear simultaneously on each display. 

1@ REM BEC MULTIFLEXING 
20 DDR=&FE62: DATREG=2FE6Q 
38 ?DDR=255 
4Q@ left _blank=15#*16 

od 

60 REFEAT 

7@ INFUT" DATA TO BRE MUL TIFLEXED"sdata 

84 SDATREG=datatleft blank 

SQ FROCsS]lower 

100 ?DATREG=data*iétright_ blank 

114 FROCSs] ower 

128 GOTO8@ 

13@ END 

iS@ DEF FROCSs!] ower . 

So: REM--1S. SPACE BAR -PRESSED. > 
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Laying it Out 
Cut the veroboard to the two 
sizes required (19 tracks of 46 
holes; 15 tracks of 28 holes). Cut 
the track breaks first on both 
boards. Solder the two chip 
sockets in place first, then the 
wire links and the resistors. If 
the bus extension socket is not 
required, then omit the red- 
coloured links in the illustration. 
Fit the minicon plug and 
(optional) socket to the main 
board, and solder the display 
unit in place — dots towards the 
socket end of the board. Solder 
the connection ribbon cables in 
place, so that they go straight 
from board to board without 
twisting. Now plug in the chips 
— make sure they are oriented 
as shown 

WIRE LINKS 

RIBBON CABLE A NOTCH 

MINICON SOCKET 
(OPTIONAL) 

WIRE LINKS 
(OPTIONAL) 

RIBBON CABLE B 

NOTCH: 

IF INKEY (-99) =—1 

ENDFROC 

18@ : 

DEF FROCdel ay 

FOR I =1 TO S@@:NEXT 

ENDFROC 

THEN FROCdel ay 

10 REM CRM 64 MULTIFLEXING 
320 DDR=S56579s DATREG=36577 

4Q@ FOKEDDR, 255 

SQ LB=15*16:RB=15 

60 INFUT"DATA TO BE MULTIFLEXED"; DT 

7@ FOKEDATREG, DT+LB 
80 GOSUBIOOG:REM SLOWER 

90 FOKE DATREG,DT*#16+RE 

100 GOSUBI@OB:REM SLOWER 

110 GOTO7O 

126 : 

1A@@ 

191@ 

REM SLOWER 
GETA£ 

i9@2Q@ IFAt=" 
1920 RETURN 
i999 : 
2000 REM DELAY S/R 
2@10 FORI=1 TO 25@:NEXT 
2020 RETURN 

3 / FX 

"THENGOSUB2000: REM DELAY 

A simple application is to use the twin seven- 
segment displays as a hexadecimal counter. ‘This 
displays a count of the number of pulses input to 
the user port from a simple make-or-break switch 
connected to one port line. On first glance this 
seems a trivial task until you realise that all eight 
user port lines are needed for the display, leaving 
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TRACK BREAKS DOUBLE DIGIT DISPLAY UNIT 

RIBBON CABLE A 

DISPLAY BOARD 

RESISTORS NOTCH 

DECODER CHIPS: 

MINICON PLUG 

WIRE LINKS 

RIBBON CABLE B 

RIBBON CABLE A 

NOTCH 

none for input. If we specify one of the lines for 
input, say line 0, then the computer’s I/O system 
will always hold this line high, no matter what 
number may be present in the data register. If 128 
(10000000 in binary) were to be placed in the data 
register, then this would instantly be changed to 
129 (10000001) because line 0 is held high for 
input. This would obviously give incorrect count 
values on the displays. The solution lies in using a 
technique similar to multiplexing. If we set line 0 to 
accept input for a short time only and set all lines 
to output for a longer time, then the displays will 
appear to glow continuously with the correct 
counter value, with only a flicker of the incorrect 
value caused by setting line 0 for input. 

10 REM BAC COUNTER 

=@ DDR=&2.FE62: DATREG=2FE 60 

28 count=0 

6@ REPEAT 

7@ PROCinput 

72 FROCadd 

73 FORI=1T04@ 

73 FROCdisplay 

77 NEXT I 

8Q UNTIL count 258 

90 END 

1@@0 DEF FROCadd 
1@1@ IF flag =1 THEN count=count+l 

1Q@5@ ENDFROC 



1499 
1500 DEF FPROCinput 

Figure it Out — 
The input to the digital display 

1510 ?DDR=254 from the user port is a four-bit 
i515 flag=0 binary number. Associated with 
i520 IF (?DATREG AND 1)=@ THEN flag=1 each of the numbers 0000 to 1111 

1525 REPEAT UNTIL (?DATREG AND 1)=1 is a unique seven-bit number, 

153@ ENDFROC each bit of which signals the 
1 oo state of one of the seven 
2088 DEF FROCdisplay segments of the display. In this 
= . 2 ee display code a zero bit means 
ee *DATREG=count that the corresponding segment 
“ is to be lit, and a one indicates 4 ENDFROC 

1@ REM CEM 64 COUNTER 
30 

40 

par] 
68 

7@ 

8@ 
90 

DDR=56579: DATREG=56577 
CC=@:REM INIT COUNT 

GOSUBI@OO:REM INFUT 

GOSUB2Z@00:REM ADD 

FOR [=1TO020 
GOSUBZ900:REM DISPLAY 

an unlit segment 

10@@ NEXT I 
110 IF CC<255 THEN6@ 

120 END 

999 
igae 
1010 
1920 
1930 
1242 
1950 
1999 
2000 
2010 
2020 

REM INFUT S/R 
POKEDDR , 254 

FL=2 
IF (PEEK (DATREG) AND 1)=@ THEN FL=1 
IF (FEEK (DATREG) AND 1)<31 THEN 1040 

RETURN 

REM ADD S/R 
IF FL=1 THEN CC=CC+1 
RETURN 

2799 3 
2000 REM DISPLAY S/R 
2@1@ POKEDDR, 255 
2020 FPOKEDATREG,CC 
20220 RETURN 

In each cycle of the program, a FOR... NEXT loop is 
used to repeat many times the routine where all 
lines are set to output, for each routine where line 0 
is set for input. For the Commodore 64 version, 20 
display: routines are executed for each input 
routine. This ratio is increased to 40 for the BBC 
version due to the increased speed of execution of 
the BBC Micro. With these ratios, a flicker is still 
detectable, but if the ratio is increased still further 
to produce a smoother display, then it is possible 
that the amount of time spent looking for an input 
is reduced so much that inputs may be missed 
altogether. In ‘real-time’ electronics such 
compromises between conflicting demands of 
parts of a system have to be made. 

Ail Boxed Up 
Since each digital display needs 
a four-bit input code, two 
displays can be driven from the 
user port. They are boxed in one 
unit compatible with our 
previously-built interfaces and 
devices 

7447A BCD To 7-Segment 
Decoder/Driver 
The internal circuitry of the chip 
shows the essential simplicity 
of its logic — the four-bit input 
is decoded into the seven 
segment outputs by the logic 
gates. The lamp test input 
switches all segments on 
simultaneously to test the chip 
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GATES 
The electronic circuitry that comprises most of a 
computer’s working parts consists of thousands of 
different kinds of switches: information is 

' represented in the machine by patterns of 
electrical currents, and its processing is effected by 
switching it through the various routes that these 
switches, or gates, provide. Gates are so called 
because their function is to allow or deny the 
passage of information according to the properties 
of the information and the nature of the gate. 

The elementary gates are the AND and OR 
gates, corresponding to the logical operations of 
Boolean algebra (see page 32). All logical 
expressions can be reduced to expressions of these 
operators, so all the processing functions of the 
computer can be built using only these gates. The 
practicalities of integrated circuit construction, 
however, make NAND and NOR (AND and OR 
gates with an inverter on the output) cheaper and 
more convenient to use in large quantities. 

GLOBALITY 
In a comparatively simple programming language 
such as BASIC, the variables used in one part of a 
program are usually available in all other parts of 
the program, so if X is initialised as 134, say, at the 
start of the program, then any subsequent. 

_ reference to X will be to that variable containing 
the value 134. Such variables are said to be global 
in scope. This is often a convenient feature, and is 
so commonplace in BAsic that alternatives 
are rarely considered. However, it can present 

problems, particularly in large programs, and 
especially those written by more than one 
programmer, or when library routines are merged 
with existing programs. Using a variable in. one 

part of a program, then inadvertently re-using it 
elsewhere for a different purpose is a very 
common error, especially when the dialect insists 
on single-character loop-counter variables. ‘The 

_ real shortcoming of global variables is the threat 
they pose to program structure. A logically 
independent block of code such as a subroutine or 
procedure should be accessible only through the 
calling mechanism (GOSUB or PROC), and should 
affect only those variables that are passed to and 
from the routine as parameters; if variables are 

- global, however, then the subroutine can affect 
their value whether or not they are passed as 
parameters. : 

Some BAsic dialects, and many other languages 
(such as PASCAL), support local variables, whose 
scope is limited to the logical block in which they 
are defined. If X is set at 134 in the main program, 
for example, and control passes to a subroutine 
containing the statement LOCAL X, then inside that 
subroutine X can be used and re-used without 
affecting the value of X in the main program. 

GRANDFATHERING 
Grandfathering is the name given to a system of 
updating files that retains a copy of the original 
file, as well as creating new, amended files. This 

‘i 

system ensures the safe storage of information, as _ 
if a file is accidentally destroyed, there is always a 
copy in existence. Once a file is amended it is 
referred to as the father file, and the file from 
which it was created the grandfather file. Any 
subsequent update of the father file is known as 
the sonfile. As the file is updated, the latest version 
is always the son file and the most out-of-date the 
grandfather file. Only three generations of files are 
stored at once, so as new files are created, the 
current grandfather file is deleted. 

GRAY CODE 
In computerised control applications, positional 
data written on a moving object must often be read _ 
by a mechanical reader. The accuracy of the 
reading is subject to errors in the timing of the read 
cycle, and it often happens that a small error 
causes the sensors to point to the gaps betweer the 
data rather than to the data itself. Itis then a matter 
of chance which of the two numbers is read by the 
sensor. The Gray codeis a way of encoding binary 
data to minimise the effect of such errors. The 
principle of the code is that only one bit of a 
number changes with every successive increment 
of the number, and the bit that does change should 
be as far to the right in the number as possible. 
Compare these numbers in binary and Gray code: 

Decimal Binary Gray Code 
po 0001 0001 
2 0010 0011 
3 0011 0010 

4 0100 0110 

5 0101 0111 

If the mechanical reader is positioned between two 
consecutive Gray code numbers and reads the 
wrong one, then the error is confined to one bit, 
since there is only one bit that changes. 

LIZ DIXON 
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As new and improved machines are 
appearing on the market all the time, many 
people find themselves replacing or 
upgrading their computers every couple of 
years. Here we present some advice on 
buying a home computer, and give some 
indication of the strengths and weaknesses 

. of the more popular models. 

When buying a new machine, it is important to 
consider exactly what your needs are — do you 
want a computer that can be expanded by the 
addition of peripherals, extra memory, etc., or can 
you afford to treat it as a disposable item, to be sold 
off when something better comes along? 

Most of the newer models boast more features 
than their older rivals, including bigger memories, 
better dialects of BAsic, higher resolution graphics 
and built-in software. But the older machines, 
particularly those that have sold in large 

~ quantities, have one major advantage — software 
availability. Many buyers of newer computers will 
have to wait for months before a large range of 
software is available — and in some cases, this 
software will never appear. A good example of this 
is the Oric Atmos. This improved version of the 
Oric-1 has been on sale for months, yet software 
writers have been reluctant to produce material for 
it. As a result, the sales figures for this machine 
have declined drastically. 

The three micros that are best served by 
software houses are the Sinclair Spectrum, the 
Commodore 64 and the BBC Micro. The 
Spectrum, in particular, is a prime example of the 
way in which creative software writing can 
overcome a machine’s inbuilt limitations: some of 
the programs for this micro can compare very 
favourably with those produced for considerably | 
more sophisticated machines. However, it is 
unlikely that any of these three machines would 
sell well if they were launched today: the Spectrum 
has an extremely poor keyboard, the Commodore 
64’s Basic lacks the commands to make the most of 
the computer’s potential, and the BBC Micro has a 
small memory and is decidedly overpriced by 
today’s standards. 

Most of the newer micros have more impressive 
specifications, but lack the depth and breadth of 
software. Anyone buying one of these newer 
machines is gambling that it will gain popularity 
and hence convince software developers to: 
generate programs for it. 

The major trend with the new home computers 
is to provide more for your money. High quality 
keyboards, larger user memories (64 Kbytes or 

more) and good graphics are now standard. The 
quality of the Basic interpreter has been improved 
considerably in machines like the Commodore 
Plus/4, Commodore 16, Sinclair QL and the 
MSX micros. The Amstrad machine even includes 
a monochrome or colour monitor in its price. 

Another interesting new trend is the provision 
of ‘bundled’, or free, software. The Sinclair QL 1s 
supplied with four such programs: a word 
processor, spreadsheet, database and business 
graphics package. The Commodore Plus/4 
provides a similar range, although the programs 
are less sophisticated and really require a disk drive 
before they can be used effectively. Other micros 
concentrate on games. Four games are supplied 
with the Commodore 16, and even Sinclair has 
started supplying a six-pack of games with its © 
ageing Spectrum. 

Anyone buying a new micro should consider 
several other points. Some machines are more 
expandable than others, allowing disk drives, 
printers, modems and other peripherals to be 
used. Some computers will accept standard add- 
ons, while others will require ‘own-brand’ 
peripherals, which limits the user’s choice. A good 
manual is essential — some machines are supplied 
with dreadful ones, which confuse more than they 
enlighten. The prospective buyer should also 
consider the type of software available for each 
machine — for example, the BBC Micro has a high 
proportion of educational software, while the 
Spectrum is a better bet for games. 

IAN McKINNELL 
Shopping for computers should 
be just like shopping for clothes, 
but somehow the weight of 
technical information and the 
range of choice combine to 
make it more like a lucky dip. A 
cool matching of your needs to 
the machines’ capabilities is an 
essential precursor to visiting 
the computer store; try to decide 
in advance what you're going to 
buy, and then let the ‘feel’ of the 
chosen machine be the last — 
not the first — deciding factor - 
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Executives and accountants, using 
expensive ‘business’ machines, are not the 
only people who can benefit from a 
spreadsheet modelling package. This series 
is designed to provide a practical guide to 
using cassette-based spreadsheets on home 
computers. 
ST SSS SSS 

There are several gen cassette-based Gaal 
modelling packages on the market for popular 
home computers like the Sinclair Spectrum, 
Commodore 64 and BBC Model B. This series of 
articles aims to provide a practical, step-by-step 
guide to using such spreadsheet packages for a 
variety of everyday applications — including home 
budgeting, working out the impact any changes in 
interest rates might have on mortgage repayments, 
and comparing the relative merits of leasing and 
buying major household items. 

The heart of any spreadsheet package is an 
electronic ‘worksheet’, which is divided into 
columns and rows (similar to a large ruled sheet of 
modelling or graph paper). The television screen 
(or monitor) acts as a movable window that can 
display any part of this sheet (which is, of course, 
bigger than the four or five columns and 10 to 15 
rows that are shown on the screen at any one time). 
An intersection of a column and row is called a 

cell: each cell can contain numbers, text or 
formulae. The spreadsheet uses a cursor — 
normally a highlighted block — that may be moved 
around it by using the cursor control keys. Any 
entry of data from the keyboard is assumed by the 
program to be intended for the cell that is currently 
occupied by the cursor. 3 
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This, then, is a rough outline of the basic design 
of a spreadsheet. For this first article, we will 
concentrate on a package called Vu-Calc; this is 
marketed by Psion and is available for both the 
Spectrum and the BBC Model B. Here we 
consider the BBC version, which is almost 
identical (except for certain minor, but irritating, 
differences in the names of some commands) to 
the version for the Spectrum. 

Vu-Calc demonstrates just how flexible and 
useful a very simple spreadsheet can be. It doesn’t 
have any of the more sophisticated features of 
modelling packages like Lotus 1-2-3 (see page 
644). You can't split the screen vertically or 
horizontally to show different parts of the 
worksheet at the same time (a facility supplied on 
the more ‘serious’ modelling packages), and you 
don’t have anything like the number of features 
offered by spreadsheets designed for business use. 
But you can use Vu-Calc to construct some very 
useful models, which may be saved on cassette, 
together with your data, for later reference. 

The version of Vu-Calc for the BBC Micro has 
a maximum of 28 columns (numbered from 1 
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upwards) and 52 rows (labelled alphabetically, 
with rows after ‘Z’ allocated double letters — AA’, 
‘BB,, etc.). This is not very large by spreadsheet 
standards, but the limit is set by the BBC Micro’s 
rather meagre 32 Kbyte memory. 

One of the most useful applications for a home 
computer spreadsheet is the annual household 
budget, which also has the merit of bemg a 
relatively simple model to build. Once 
constructed, such a model enables you to see at a 
glance what the impact of any increased 
expenditure — an unduly heavy telephone bill, 
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say, Or an n unscheduled trip to France — will be on 
your expected cash surplus (always assuming that 
you have one). In other words, once the model is 
built, you can play around with the data and see 
_how the effect of one alteration can be reflected 
across the spreadsheet as a whole. 

BUILDING A MODEL 
The first step in building such a model is to write 
down ona piece of paper a list of all the household 
expenses that you can think of. The next task is to 
note the expected monthly figure under each 
heading. It is here, at the point of calculating or 

~ estimating the monthly amount and keying it into 
the model, that Wu-Calc’s strengths become 
apparent. The expense categories are keyed in one 
after the other down the first column, and each 
subsequent column is labelled ‘Jan’, ‘Feb’, ‘Mar’, 
etc. Vu-Calc requires that all text entries be 
preceded by a double quotation mark, but this 
punctuation does not appear on the displayed 
spreadsheet. The first few rows and columns of 
our model might therefore look like this: 

This gives us the basic ‘shape’ of the model. We 
now need to input the relevant values, and to do 
this we use Vu-Calc’s REPLICATE command. 

Vu-Calc has a limited number of commands, all 
of which are prefixed with a # sign. (When you 
type # at a blank cell, the program goes into 
‘command mode’ and waits to be told the 
command you want to use.) The most useful of 
these commands is REPLICATE — this is because the 
most boring part of building a model is the need to 
key in all the values the model will use. REPLICATE 
is basically a labour-saving device that allows the 
same piece of data to be entered into many 
different cells simultaneously. 
A common part of a household expenses/ 

budget model is the fixed monthly expenses, such 
as the rates, the mortgage or the rent. If the 
mortgage is, say, £150 a month, the REPLICATE 
command would be used to insert £150 in the 
appropriate 12 cells. ° 
When you invoke the REPLICATE command by 

typing #R, a prompt line appears at the top of the 
screen, above the model itself, which reads: 

Replicate - Enter the cell to replicate, RETURN for the 
current cell. 3 

This asks you to specify the cells that are to be 
copied (notice that you can copy only one cell, not 

_a whole block of cells — this is one of Vu-Calc’s 
more obvious limitations). The cell is specified by 
its co-ordinates, with the row letter given first, 
followed by the column number — i.e. C2. Once 
this has been entered, the prompt line asks you to: 

Enter the range over which the data is to be replicated. 

A range of cells in Vu-Calc is indicated by 
specifying the first (or leftmost) cell and the 
bottom rightmost cell of the range. (Think of the 
block of cells as a box; you have to tell the program 
the co-ordinates of the box’s top left and bottom 
right corners. ) 

In our example, we want to tell the program to 
put £150 into the range of cells in Row C, from C3 
to C13 (the columns labelled ‘Feb’ to “Dec’). The 
format for this is #R,C2,C3:C13. This automatically 
fills each cell, almost instantly, with the value 150. 
(The real power of the REPLICATE command comes 
in copying formulae from cell to cell, but this is a 
fairly specialised area, since such formulae can 
either be ‘relative’ to a particular cell or ‘absolute’ 
—a distinction and a topic that we will cover in 
the next instalment.) 

We now work through all our expense headings 
in the same way. Note that if you decide that in 
specified months the amount for a particular 
expense should be greater or less than the standard 
value, you can simply move the cursor to that cell 
and enter a new value. This will immediately 
overwrite the old figure. 

In our model, column 14 will be the monthly 
totals column. There would be little point in using 
a spreadsheet if you needed to use a calculator to 
add up each month’s expenses, so Vu-Calc can be 
used to add all values in any row or column.'The'@ 
command indicates that you want to add the 
values contained in a range of cells; this range is 
specified in the same way as before. So, to total the - 
year’s mortgage payments, and to put the result in 
cell C14, you simply place the cursor at C14 and 
type @C2:C13. The result — 1800 in this case — is 
immediately displayed. | 
We could just as easily have put a formula into 

cell C14; instead of adding all the values we could 
have entered C2*12. Vu-Calc would have taken 
this to be a formula, as the C is not preceded by a 
quote mark, and would have executed it 
immediately, giving the result 1800. This 
illustrates that there is often more than just one 
way to achieve a particular result. 

_ Inthe next instalment of the course, we will look 
at how expenses can ‘grow’ by fixed percentages, 
and how relative and absolute cell reference 
formulae may be replicated. 
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DRAGON 
SLAYER 
In the last instalment of the course we 
published four sprite bit maps suitable for 

with Commodore 64 _ Loco. 
Continuing our investigation of its sprite 
facilities, we develop the ‘curve of pursuit’ 
algorithm through the three bugs problem 
and a pursuit game using the sprites, and a 
sophisticated interception strategy. 

We give here the procedures for a game that uses 
LOGO sprites. You control a dragon that attempts 
to reach and destroy a city. The defence of the city 
is in the hands of a flying knight (under the control 
of the computer), who will try to kill the dragon. 
You control the dragon’s direction of movement 
with the joystick. If you do evade the knight and 
get close enough, the city will burst into flames 
from the dragon’s breath. 

To run the game you will need to read in the 
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SPRITES file, define your shapes, type in the 
procedures and then type GAME. After performing 
various set up tasks, the GAME procedure then calls 
PLAY, which is the central procedure. PLAY moves 
the dragon and the knight in turn, and checks to 
see if the dragon has reached the city, or if the 
knight has hit the dragon. The remaining 
procedures carry out other parts of PLAY’s actions. 

The available colour commands are very 
straightforward. To set the background colour use 
BACKGROUND followed by a colour number, and to 
set a sprite colour (and the colour of the line it 
draws if the pen is down) use PENCOLOR. The 
colour numbers are given names in INIT. 
VARIABLES, so that we can then specify colours by 
name, using commands such as PENCOLOR :RED. 

In the procedure PLAY, the line: 

IF HIT? THEN DRAGON. DESTROYED 

is used to test if the knight has hit the dragon. The 
procedure HIT? illustrates the way in which we can 
write our own test conditions in LoGo. It returns a 
value of “TRUE or “FALSE, and this is used as an 
input to the IF statements. The result “TRUE would 
then cause the conditional action to be carried out. 

HIT? uses a procedure from the SPRITES file, 
TS?, which returns “TRUE if a sprite is touching the 



current sprite. HIT? first sets the current sprite to 
the dragon and then asks if anything is touching it. 

The command JOYSTICK takes 0 or 1 as input 
(corresponding to ports 1 and 2). The output is —1 
if the joystick is central, 0 if up, 1if at 45°, 2ifat 90", 
and so on up to 7. Here, we simply set the dragon’s 
heading to 45° multiplied by the output number. 

Explosions and similar effects are easy to 
achieve using sprites. A shape representing the 
explosion is simply flashed on top of the object to 
be destroyed. We give the FLAME sprite a low 
number so that it will have high priority and thus 
appear on top of the other sprites. 

The computer controls the knight, but it uses a 
very simple defensive strategy: the knight heads 
straight towards the dragon. As the game stands 
the dragon can slip by the knight and destroy the 
town fairly easily. 
How can we improve the knight's defensive 

strategy? One simple way is to increase his speed, 
and simply increasing this from 10 to 11 makes it 
very difficult for the dragon to get by. (Wrapping 
round the screen is cheating!) A slightly better 
strategy is for the knight to aim to cut the dragon 
off by heading for the line between the dragon and 
the city and staying there. 

In the next instalment, we will look at some of 
the sprite features found in Atari Loco. 

Flame 1 
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SUSPENDING 
OPERATIONS 
We briefly introduced the concept of 
‘interrupt handling’ when we reviewed the 
Toshiba HX-10 (see page 669). These are 
messages that interrupt the task that a 
processor is currently performing, in order 
to convey important information to it. 
Here, we explore the interrupt mechanism 
in detail. 

One common application of interrupts is when 
we are dealing with input from the keyboard. If a 
program directly accesses the keyboard — usually 
via the operating system — to obtain the next 
input character, then any key that is pressed while 
the program is doing something else will be lost. 
Even when the processor is fully engaged in 
processing keyboard input, it is still possible for it 
to lose a character, especially one that follows a 
character that needs extra processing, such as a 
carriage return. | 

The solution is for the keyboard to interrupt 
the processor whenever a key is pressed, so that 
the processor stops what it is doing and performs 
an ‘interrupt service routine’. This takes the 
character that has just been input and places it in 
a section of memory reserved as a keyboard 
buffer. The processor can then return to whatever 
it was doing and carry on as though nothing has 
happened. | | 
Whenever the operating system keyboard 
input routine is called, it does not look at the 
keyboard directly but takes the next character out 
of the buffer instead (waiting for one to appear if 
the buffer is empty). This mechanism enables the 
user to ‘type ahead’ of what actually appears on 
the screen, and should ensure that no characters 
are lost. 

There are, however, two possible problems. 
The user may type so quickly that the buffer fills 
up faster than the program can deal with the 
input, thus causing the buffer to overflow. The 
solution to this requires a compromise between 

allowing sufficient memory for an adequate-sized 
buffer and not wasting too much valuable 
memory space. The second problem arises with 
those users who feel uncomfortable when a 
character does not appear on the screen 
immediately a key is pressed. They may keep 
pressing the key, and thereby generate dozens of 
characters that then go into (and again may 
overflow) the buffer. This problem is usually 
solved by familiarity with the computer. 

Another useful application for interrupts 
occurs when output is sent to a printer — which is 
often one of the most time-consuming operations 

a micro needs to perform. During printing, the 
processor may be required to work for 100 
microseconds while it sends a character to the 
printer, and then wait thousands of microseconds 
for the printer to process that character. A 
spooling system is one answer to this: it places the 
files to be printed in a queue, and part of the first 
file in the queue is loaded into another buffer area 
of memory. The port that serves the printer will 
interrupt the processor whenever the printer is 
ready for another character to be sent. The 
interrupt service routine will then send the next 
character from the buffer, or (if the buffer is 
empty) load the next section from the file at the 
head of the queue into the buffer. In this way, 
printing can be going on in the background, while 
the processor is free to get on with something else. 

TYPES OF INTERRUPT 
There are some operations that the processor 
performs — such as accessing disks — where 
being interrupted can cause data loss or some 
other catastrophe. There must be, therefore, a 
mechanism for masking interrupts so that the 
processor can ignore any that occur during a 
particularly sensitive operation. If this is the case, 
it is preferable that a note is made to indicate that 
the interrupt has occurred, so that it can be dealt 
with later. 

Conversely, if we are dealing with a disk 
interface that is interrupt-driven, then its 
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interrupt One 
_ When an interrupt occurs, the 
processor completes execution 
of the current instruction, and 
stacks the current contents of 
the program counter. The 
interrupt vector address 
appropriate to the interrupt is 
then loaded into the program 
counter, and control passes to 
that address — usually in ROM. 
This address points to another 
address — usually in RAM — 
where a JMP instruction directs 
control to the actual interrupt 
service routine. This is 
terminated by the RT| 
instruction, which passes 
control back to the main ~ 
program via the return address 
on the stack. Since the JMP 
instruction is stored in RAM, it 
can be found and changed by 
the programmer so that on an 
interrupt, control passes first to 
a special-purpose user routine 
and then to the normal service 
routine 

NMI VECTOR 

JMP NMI S/R 

JMP SWI S/R 

JMP IRQ S/R 
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Interrupted Interrupts 
If an interrupt occurs during an 
interrupt, one possible solution 
is for the processor to ‘nest’ the 
interrupts: whenever an 
interrupt occurs, PC is stacked 
and the new interrupt is handled 
immediately and control returns 
to the stacked address. The 
limits on this nesting are the 
capacity of the stacks, and the 
ability of the interrupt- 
generating devices to withstand 
delays in processing their 
interrupts. 

An alternative is for the 
processor to stack the details of 
any interrupt on an interrupt 
queue. When the first interrupt 
is complete, the processor 
inspects the queue, processes 
any interrupt it finds there until 
the queue is empty, and 
eventually passes control back 
to the program 
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interrupts would be given priority and under no 
circumstances masked — thus giving rise to the 
concept of a non-maskable interrupt. Such an 
interrupt might come from a circuit that detects a 
drop in the mains supply voltage: its service 
routine would immediately start saving the 
current task while power remained. 
When interrupts can occur from more than one 

source, we must consider the possibility of nested 
interrupts. If an interrupt occurs while the 
processor is in the middle of servicing another 
interrupt, there are two possible strategies for 
handling it. First of all, the new interrupt could be 
ignored until the current one is completed. 
Secondly, interrupts could be ranked on a scale of 
urgency, so that a high-priority interrupt could 
override the handling of one with a lower priority. 
In this case, the operating system would have to 
be able to deal with the nesting of interrupt 
service routines. 

SOFTWARE INTERRUPTS 
The SWI instruction, which we briefly mentioned 
on page 577, can be used in a program as a 
convenient way of returning to the operating 
system by generating its own interrupt — called 
the ‘software interrupt’ (as distinct from the 
hardware-generated interrupts we have been 
discussing so far). SWI instructions can also be 
used to act as breakpoints in a machine code 
program to aid in debugging; this facility is 
provided by many ROM-based machine code 
monitors, as well as debugging packages. The 
user chooses points in the code where program 
execution is to pause, and the instructions at these 
locations are replaced with SWls. When the 
program is run, the interrupt service routine then 
allows the programmer to inspect and possibly 
alter the contents of registers and memory 
locations, and see exactly what the program is 
doing. When execution is resumed, the monitor/ 
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debugger replaces the instruction displayed by 
the breakpoint SWI, and continues with the 
program from that point. | 
The 6809 has three separate interrupt 
mechanisms: IRQ (Interrupt ReQuest), FIRQ (First 
Interrupt ReQuest) and NMI (Non-Maskable 
Interrupt). These are all activated by the 
appropriate signal being received on three pins on 
the processor chip. The bar above the name (in 
IRQ, for example) indicates that they are activated 
by a zero signal at the processor, rather than a 
one. These three pins are connected to the main 
bus so that peripheral chips like the 6820 and 
6850 can have their interrupt request output pins 
connected to the same bus lines. When the chips 
are programmed, the interrupts can be enabled 
and then the appropriate signals will 
automatically be sent. 

There are also three software interrupts caused 
by the SWI, SW12 and SW13 instructions. 
When an interrupt occurs, control passes to the 

vector address contained in a specific location at 
the top of memory. These vector addresses are 
usually found in ROM, so control will always pass 
from there to the same fixed address. However, 
this address will normally be in RAM and will 
contain a JMP instruction, so that the final 
destination can be changed to the user’s own 
service routine. The memory locations are: 

It is also worth noting that the top two bytes of 
memory — SFFFE and SFFFF — contain the reset 



vector, the address to which control is transferred 
on power-up or a hardware reset; this is usually 
the start address of the ROM _ monitor. 
Furthermore, the two bytes at SFFFO and SFFF1 are 
reserved by Motorola for possible future use. - 

Information about interrupts is contained in 
three bits of the condition code register (CC); bit 
4 (I), bit 6 (F) and bit 7 (E). Setting the I bit to one 
masks the IRQ interrupt, setting the F bit masks 
FIRQ. The E bit is used by the processor to 
differentiate between IRQ or NMI, and FIRQ: if E 
gets set to one then there has been an IRQ or NMI, 
if E gets set to zero then an FIRQ has occurred. 
When an interrupt is received, it is treated in a 

similar way to a subroutine call: the contents of 
some or all of the registers are stacked so that 
control can be returned to the same point in the 
program currently being executed. The interrupt 
service routine ends with an RTI instruction 
(similar to an RTS), which unstacks the registers 
and returns control to the original program. 

The actual difference between the FIRO and the — 
other two interrupts is that FIRQ stacks the 
program counter (PC) and the condition code 
(CC) registers only, and is therefore much faster 
in operation than the other two. The interrupt 
service routine, however, must restore any 
registers that it uses, so this type of interrupt 
should not be used for routines that use more than 
just one or two registers.We can see now where 
the E bit is used because the same RTI instruction 
is used to terminate IRQ and FIRQ routines, but the 
processor must determine which registers need 
unstacking. The sequence of events when an 
interrupt occurs is: 

1) The current instruction is _ executed. 
2) The I bit is set, disabling other IRQ interrupts. If 
the interrupt was a FIRQ or a NMI then bit F is also 
set to disable FIRQ. SW12 and SW13 do not mask 
other interrupts, but SW1 does. 
3) On an FIRQ bit E is cleared to zero, otherwise it 
is set to one. 
4) The vector in the appropriate memory 
locations is loaded into PC and execution 
continues from that address. 

Our first program looks at another Socal use 
for interrupts; namely maintaining a real-time 
clock. We shall assume that some timing device, 
which could be a special purpose chip like the 
6840 interval timer or a division of the system 
clock or a modification of the 50Hz mains, is 
connected to a PIA at $5000. The first subroutine 
will enable the interrupts and set up a 16-bit 
counter at $50. The interrupt service routine will 
simply increment the counter so that at any time 
inspection of $50 will give the number of timing 
signals that have been received, from which the 
time can be calculated if the start-up time and the 
frequency of the timing signals are known. 

The second example program assumes a 
printer is connected to the same PIA at SE000. We 
shall employ a buffer, of indeterminate length, at 
$100 to store one line of output to be printed by 

the service routine. A flag at S50 is set to zero 
while the line is being printed, and to one when 
the line is finished. This will enable some other 
routine (which we shall not be concerned with 
here) to refill the buffer. Locations $51 and $52 
contain a pointer into the buffer giving the 
address of the next character to be printed. The 
first subroutine sets up the PIA, flag and buffer 
pointer for a new line. | 
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CALLING 
COMMODORE 
The variable search program that we 
developed for the BBC Micro and the 
Spectrum on pages 664 to 665 can easily be 
converted to work on the Commodore 64. 
The Commodore 64 program is, in fact, 
little simpler because there are not so many 
special cases to allow for. | 

PEE EES 

Many of the variable names in the Coremodite 
version of the program have to be abbreviated to 
avoid including a Basic keyword. For example, 
NEWLINE cannot be used as a variable name 
because it starts with NEW, and TEXTPOINTER 
cannot be used either because it includes INT. 

The changes near the beginning of the program 
are necessary because of the differences in the way 
a line of BASIC is stored in the computer’s memory. 
In the BBC Micro and the Spectrum, a line of 
BAsIC in the internal format begins with a two-byte 
line number, with the high order byte coming first, 
_and one or two bytes for the length of the line. In 
the Commodore 64 a line of Basic begins with a 
two-byte pointer to the start of the next line and a 
two-byte line number, with the low onder byte 
coming first in both. 
We still Ha to 0 skip REM lines and strings inside 

quotes, but we do not have to look for any other 
special cases that might cause confusion, like the 
hexadecimal numbers on the BBC Micro or the 
hidden binary form of numbers on the Spectrum. 
The section of the program that actually picks 

out the variable names looks for a letter of the 
alphabet first, then letters or digits, and at the end 
it looks for a S$ or % sign indicating a string or 
integer variable and a ( , indicating a function or 
array. The Commodore 64 does not allow the 
underscore character that can be included in 
variable names on the BBC Micro and the 
Spectrum. 

Although the Commodore 64 can display both 
upper and lower case letters, the difference is only 
in the form of the character as it appears on the 
screen, and not in the internal code for the 
character. Thus, the program only needs to look 
for upper case letters in a variable name. 

The Commodore 64 version of the program is 
used in the same way as the BBC Micro and 
Spectrum versions. Type in the search program 
and SAVE it, then LOAD the program to be searched 
and append the search program to it. You can then 
search the program by “RUN 30000”, and typing in 
the variable name when the program asks for it, 
ending the name with “(” if you want to find an 
array name. 

There is a simple method of joining two SAVEd 
programs on the Commodore 64, provided the 
line numbers in the first program are all less than 
the line numbers in the second program. The 
method uses two of the pointers in page zero: 
TXTTAB, at addresses 43 and 44, which hold the 
address where the BASIC program starts, and 
VARTAB, at addresses 45 and 46. A BAsIc program 
ends with a byte containing zero that marks the 
end of the last line of the program, then two more 
zero bytes that mark the end of the program. The 
address in VARTAB is normally the byte following 
the last of these zeros. To join two programs 
together, first LOAD the program with the lowest 
line numbers, then type: 

PRINT PEEK(45), PEEK(46) 

If the first number is between two and 255 subtract 
two from it and POKE the result into address 43. Ifit 
is zero or one, POKE 254 or 255 into address 43 and 
POKE one less than the result of PEEK(46) into 
address 44. You can then LOAD the second 
program, and finally type: 

POKE 43,1: POKE 44,8 

This will put the normal value back into the ‘start 
of Basic’ pointer and the programs will now be 
joined together. 



Here, courtesy of Zilog Inc., we produce another part of the Z80 programmers’ reference card. 
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